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Basic Concepts in Electrochemistry
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What is electrochemistry?

Electrochemistry is defined as the branch 
of chemistry that examines the 

phenomena resulting from combined 
chemical and electrical effects.
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Types of processes
• This field covers:

- Electrolytic processes: 
Reactions in which chemical 
changes occur on the passage of an 
electrical current 

- Galvanic or Voltaic processes:  
Chemical reactions that result in 
the production of electrical 
energy 
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Electrochemical cell

An electrochemical cell typically consists 
of:

- Two electronic conductors (also called 
electrodes) 

- An ionic conductor (called an 
electrolyte)
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Modes of charge transport

Charge transport in the electrodes occurs 
via the motion of electrons (or holes), 

Charge transport in the electrolyte 
occurs via the motion of ions (positive 

and negative)
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Reactions – half cell and overall

At each electrode, an electrochemical reaction 
occurs. This reaction is called a half cell 

reaction (since there are two electrodes in a 
typical cell at which reactions occur)

The overall chemical reaction of the cell is 
given by combining the two individual half 

cell reactions



10

Half cell reaction types
• There are two fundamental types of half cell 

reactions:
- Oxidation reactions 
- Reduction reactions

A reaction is classified as oxidation 
or reduction depending on the 
direction of electron transfer
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Oxidation and reduction energetics
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Oxidation
• Involves the loss of an electron
• Involves the transfer of electrons from the species 

to the electrode

R = O + ne (1)

Oxidation is an energetic process, and occurs 
when the energy of the electrode dips below the 

highest occupied molecular orbital of the 
compound – see figure part b
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Reduction
• Involves the gain of an electron
• Involves the transfer of electrons from the 

electrode to the species

O + ne = R (2)

Reduction is also an energetic process, and occurs 
when the energy of the electrode increases 

above the lowest vacant molecular orbital of 
the compound – see figure part a
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Example of electrochemical cell

Zinc and copper 
metals placed in a 
solution of their 

respective sulfates, 
and separated by a 

semi permeable 
membrane
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Reactions
• Zinc metal gets oxidized - goes into solution:

Zn = Zn 2+ + 2e (3)
• Copper ions in solution – reduced; copper metal -

deposited on the copper electrode 
Cu2+ + 2e = Cu (4)

• Electrons for reduction obtained from the zinc 
electrode - external wire 

• Sulfate ions [reaction (4)] migrate through the 
membrane, - react with the zinc ions [from (3)] -
zinc sulfate 
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Convention

• Electrode at which the oxidation reaction 
occurs is called the anode

• Electrode at which the reduction reaction 
occurs is called the cathode

Thus in the above example, the zinc electrode 
was the anode and the copper electrode was 

the cathode
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Working and counter electrodes
The electrode at which the reaction of interest 

occurs is called the working electrode

The electrode at which the other (coupled) 
reaction occurs is called the counter 

electrode

A third electrode, called the reference 
electrode may also be used 
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What gets oxidized?
• In previous example:

- Zn was oxidized
- Cu was reduced

For a given set of two reversible redox 
reactions, Thermodynamics predicts 

which reaction proceeds as an oxidation 
and which proceeds as a reduction
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Electrode potential
The electrode potential for a reaction is 

derived directly from the free energy 
change for that reaction

∆G = - NFE 

The standard oxidation potential is equal in 
magnitude, but opposite in sign to the std. 

reduction potential
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Competing reactions
• For a set of 2 competing reactions:

The reaction with the lower standard reduction 
potential gets oxidized - the other reaction 

proceeds as a reduction

Zn = Zn 2+ + 2e (3)  E°
red = --0.7618 V

Cu2+ + 2e = Cu (4) E°
red =     0.341 V

Thus, in the above example, Zn is oxidized, 
and Cu is reduced
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Rationale
∆Gcell = - NFEcell

Ecell = Ecathode – E anode

For a feasible reaction: Ecell must be 
positive (so that ∆Gcell is negative – recall 
thermodynamic criterion for feasibility)

Therefore: 
Ecathode – E anode > 0 or 
Ecathode > E anode
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• Since oxidation occurs at the anode – the 
species with the lower reduction potential 
will get oxidized 

• This is to ensure that ∆Gcell is negative
• This is why Zn got oxidized (and Cu 

reduced) in the above example. 
• In this case: Ecell = 1.102. 
• If the reverse were to occur, Ecell would 

be: -1.102, leading to a positive ∆Gcell
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Sources of E°
red values

Comprehensive listings of E°
red values for 

most half cell reactions are available in:

- The Lange’s Handbook of chemistry
- The CRC Handbook of chemistry 

and physics
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Faraday’s law

Relationship between the quantity of 
current (charge) passed through a 

system, and the quantity of (electro) 
chemical change that occurs due to the 

passage of the current
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Mathematical statement
m = M I t /n F  (5)

m - mass of substance
M - molecular weight of the substance
I  - current passed (A)
t  - time for which the current is passed 

(s)
n - number of electrons transferred

F - Faraday constant (96475 C / eqv) 
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Key concept

The amount of chemical change is 
proportional to the amount of 

current passed
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Faraday’s second law

Restatement of the first law for a fixed 
quantity of charge passing through 

the system
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Faradaic processes
All processes that obey Faraday’s law are termed 

faradaic processes

All these processes involve electron transfer at an 
electrode / electrolyte interface

These reactions are also called electron / charge 
transfer reactions

Electrodes at which these processes occur are 
called charge transfer electrodes
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Nonfaradaic processes
Sometimes  changes exist in the electrode / 

electrolyte interface without charge 
transfer taking place

These changes are due to processes such as 
adsorption and desorption

Such processes are called nonfaradaic
processes
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No electrons flow through the electrode / 
electrolyte interface during nonfaradaic 

processes

However, transient external currents can 
be generated by nonfaradaic processes



31

More on nonfaradaic processes
Faradaic processes interest us the most! 

Therefore, care must be taken to ensure 
that the effects of the nonfaradaic 

processes are understood and quantified.

Some examples of nonfaradaic processes 
are discussed in the following slides
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Ideally polarized electrodes

An electrode at which there is no charge 
transfer across the electrode / electrolyte 

interface over all potential ranges is 
called an ideally polarized electrode 

(IPE)
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Examples of IPEs
None exist that can cover the entire potential 

range in solution

A mercury electrode in contact with deaerated  
KCl behaves as an IPE over a potential 

range of ~ 2V

Other electrodes are ideally polarized over 
much smaller ranges
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Behaviour of an IPE
Recall – no charge transfer possible at IPE / 

electrolyte interface

The behaviour of such an interface when the 
potential across the electrode is changed 

resembles that of a plain capacitor

An IPE follows the standard capacitor 
equation
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Mathematical treatment
Q = CdE (6) – capacitor equation

Q - charge stored in coloumbs (C)
Cd - capacitance in farads (F) 
E - potential across the capacitor /IPE (V)

When voltage is applied across an IPE, the 
“electrical double layer” is charged until eqn. 6 is 

obeyed

During charging a charging current flows 
through the system
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Significance of charging currents
• Contributes to total current measured
• Cannot be ignored– especially for low 

faradaic currents – may exceed faradaic 
currents in such cases

To better understand the effect of charging, 
we need to examine mathematically the 

responses of an IPE to various 
electrochemical stimuli



37

Model representation of an IPE

Cd Rs

The IPE system can be represented as a 
capacitance (Cd) in series with the 

electrolyte resistance (Rs) 
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Application of a potential step
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Input

A potential step is applied – i.e. the 
potential is raised from an initial value to 

a higher value, and held at the higher 
value

See previous fig. , bottom graph
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Result of potential step application
• The double layer is charged 

Q = Cd E (6)

NOTE:
The applied voltage must equal the sum of the 

voltage drops across the resistor (Er) and 
capacitor (Ec), we have 
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E = Er + Ec (7)
Applying Ohm’s law,

Er = I Rs (8)
from (6),

Ec = Q/Cd (9)
Therefore:

E = IRs + Q/Cd (10)
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By definition, current is the rate of flow of 
charge

Therefore:
I = dQ/dt (11)

Equation 10 can be rewritten as:

I = dQ/dt = -Q/RsCd + E/Rs
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Solution
Initial condition: that the capacitor is initially 

uncharged  (Q = 0 at t = 0)

solution of eqn. 2 is:

Q = E Cd [1 – e (-t/Rs
C

d
)] (13)
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Time dependence of charging current

Differentiating eqn. 13 w.r.t. time, we get:

I = (E/Rs) * e (-t/Rs
C

d
) (14)

Equation 14 describes the time dependence 
of the charging current in response to a 
potential step – also see following figure, 

top graph
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Graphical representation
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Practical significance
Product of Rs and Cd has units of time – called time 

constant (τ)

For typical values of Rs and Cd, the charging current 
dies down to an insignificant level in a few 

hundred microseconds

Any faradaic current must be measured after this 
time period to avoid the influence of the 

charging current
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Back to faradaic processes
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Investigation of electrochemical 
behaviour

Involves holding certain variables constant 
while observing the trends in others

Typical variable shown in diagram
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Variables to be considered
V

A
Load / Power Supply
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Main aspects of interest
• From a fuel cell point of view, the main 

aspects of interest are:
- Electrochemical kinetics
- Ionic and electronic resistances 

a. In electrolyte 
b. In electrodes

- Mass transport through the electrodes

These processes are illustrated in the 
following schematic
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Current
Current may be written as the rate of change 

of charge:
I = dQ/dt (15)

The number of moles (N) participating in an  
n electron electrochemical reaction is given 

by 
N = Q/nF (16)
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Reaction rate
• The electrochemical reaction rate can be 

written as:
Rate (mol/s) = dN/dt

From 16,
Rate = (1/nF) dQ/dt

From 15,
Rate = I/nF (17)

Thus the current is a direct measure of the 
rate of electrochemical reaction
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Reaction flux
• Sometimes, it is convenient to express 

quantities as a flux:
• Dividing the rate (17) by the active area of 

the electrode (A, cm2), we get:
Flux (J, mol/cm2.s) = I/nFA

• Replacing I/A by i (current density A/cm2), 
we get:
Flux (J, mol/cm2.s) = I/nFA = i/nF (18)
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Polarization and overpotential
• Faradaic reactions – have an equilibrium potential -

based upon reaction free energy
• On passing faradaic current - the potential shifts from 

this equilibrium potential
• This shift is termed polarization
• Extent of shift - measured by the  overpotential (ή)

ή = E – Eeq, (19)
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Polarization curves
Information about the faradaic reaction is 
gained by determining current as a function 

of potential or vice versa.

The resulting curves (see following figure) are 
called polarization curves (or V-I curves or 

E-I curves).

Obtaining such curves is a critical part of fuel 
cell research.
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Typical fuel cell polarization curve
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Resistance in electrochemical 
cells
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Types of resistance

• Electronic resistance – due to electronic 
current through electrodes and external 
circuit – can be minimized by using electron 
conducting materials

• Ionic resistance - due to ionic current 
through electrolyte – needs to be considered 
seriously as it leads to losses
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Ion transport
• At the anode - excess of positive ions –

build up of positive charge
• At the cathode – excess of negative ions -

build up of negative charge 
• Buildup of ionic charge - released by the 

ion transport
• Positive ions move from anode to cathode 

and vice versa  
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Transport numbers
The fractions of current carried by the positive and 

negative ions are given by their transport numbers 
t+ + t- respectively

Each mole of current passed corresponds to 1 mole 
of electrochemical change at each electrode. 

Therefore the amount of ions transported in the 
electrolyte also equals 1 mol. Thus:

t+ + t- = 1 (20). 
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For multiple species
More generally,
Σ ti = 1 (21)

This equation is valid when more than one 
type of ion is in solution.

The transport numbers of ions are determined 
by the conductance (L) of the electrolyte
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Conductance and conductivity
• . The conductance of an electrolyte is given 

by:
L = κ A / l (22)

A - active area of contact
l  - length (thickness) of electrolyte matrix 
κ – conductivity - intrinsic property of the 

electrolyte  

Conductance has units of  Seimens (S), and 
conductivity of S/cm



65

Conductivity
The conductivity of the electrolyte has a 

contribution from every ion in solution

• Conductivity is proportional to:
- concentration of the ion (C)
- charge of ion (z) 
- a property that determines its migration 
velocity – also called mobility
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Mobility
Mobility is defined as the limiting velocity 

of the ion in an electric field of unit 
strength

Now, force exerted by an electric field of 
strength E is given by:

F = eE*z (23)
Where e is the electronic charge
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Opposing force 
• An opposing force exists due to frictional 

drag. 
• This is represented by the Stokes equation:

Fopp = 6Πνrv (24)
ν - viscosity of the solution
r - ionic radius 
v - velocity of the ion in solution 
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Terminal velocity of ion
When the forces exactly counterbalance each 

other, the ion attains a steady state velocity 
called the terminal velocity

This terminal velocity is termed the 
mobility (u) when the electric field 

strength is unity:

u = z e / 6Πνr (25)
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Back to conductivity
• With the above expression for mobility, we 

write the following expression for κ

κ = F Σ zi ui Ci (26)

• Now recall – transport no. (t) - contribution 
made by each individual ion to the total 
current carried in solution.
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Expression for transport no.
The transport no. may be represented as 

the ratio of the contribution to 
conductivity made by a particular ion to 

the total conductivity of the solution

Thus:
ti =  zi ui Ci / Σ zi ui Ci (27)
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Resistance
• Resistance is defined as:

R = l/ κ A (28)
• The ionic resistance is an inherent property 

of the ion in motion and the electrolyte
• Effect of resistance in electrochemical cells 

- Ohm’s law:
V = I R (29 - a) 

• R will introduce a potential drop V which 
will increase with current
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Ohm’s Law
• More appropriately Ohm’s law is expressed 

as:

I = κ (dΦ/dx) (29-b)

where δφ(x)/δx - potential gradient
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Minimizing R, IR Compensation
• R can be minimized by:

- minimizing distance between electrodes
- increasing area of contact (not preferred –

this is governed by many other factors)
• Need to realize – some portion of R will always 

remain. So realistically:
Emeasured = Ecathode – E anode – IR (30)

• If the value of R is known, one can compensate 
for ohmic drop – the compensated E is a closer 
representation of the actual E:

Ecompensated /actual = Emeasured + IR (31)
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Sources of IR in the fuel cell
IR compensation is critical while analyzing fuel cell 

data for kinetic and transport parameters.

Ohmic drops occur due to IR in the electrolyte 
and the electrodes – the IR in the electrode 

should not be neglected!

IR compensation in both the electrolyte and the 
electrode shall be discussed in future lectures
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Typical fuel cell polarization curve
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Mass transport in electrochemical 
cells
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Modes of mass transport 
• There are 3 fundamental modes of mass transport 

in solution. They are:
- Migration – this is the motion of a charge 

body (such as an ion) under the influence of an 
electrical potential gradient

- Diffusion – this is the motion of a species 
under the influence of a chemical potential 
gradient

- Convection – this is hydrodynamic transport 
either due to density gradients (natural convection) 
or due to external means such as stirring (forced 
convection)
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Governing equation
• The governing equation for mass transfer is the Nernst 

–Plank equation. For one (x) dimension (and one 
species):

J (x) = -D [δC(x)/δx] – [z F/RT][D*C δφ(x)/δx] + C*v(x)  
(32)

J - flux in mol / cm2.s
D - diffusion coefficient (cm2/s)
δC(x)/δx - concentration gradient
δφ(x)/δx - potential gradient
v - velocity with which an element of solution moves in the x 

dimension 
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Current vs. flux
• Faraday’s law - current produced– proportional 

to the number of moles of reactant in solution
m = M I t /n F  (5)

Can rewrite as: 
I / nFA = m/MtA = N/tA = J (33)

Where N = no. of moles 

Do not confuse N with n, the no. of electrons 
transferred
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The mass transport limit
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The mass transport limit
• Recall – also see previous diagram – that 

reactants are consumed at the electrode

• The larger the current, the faster the rate of 
consumption – Faraday’s law

• The reactants arrive at the electrode via 
transport from the bulk
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Mathematically
If maximum transport flux = reaction flux 

(current), the reaction is mass transport limited

J = I /nFA (34)
Reactant concentration at electrode = 0,

all reactant - immediately consumed

The reaction cannot proceed at a rate faster than 
the mass transport limited rate
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• Assume - no convective mass transport, 
negligible transport due to migration

• Flux at the electrode may be written as:

J = - D(dC/dx)x=0 (35)

D is the diffusion coefficient of the reactant 
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The Nernst diffusion layer
Thin layer that lies intermediate  bounds the 

electrodes and the bulk)
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Nernst diffusion theory

• A thin layer of electrolyte (thickness δ) in 
contact with the electrode surface - ion 
transfer controlled solely by diffusion.

• Concentration of species - maintained 
constant outside this layer (in the “bulk”) by 
convective transfer.
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• Assume - linear conc. gradient in the Nernst 
diffusion layer

• Eqn. 35 can be rewritten as:

J = [D/δ][C* -C(x=0)] (36)

δ - thickness of the Nernst diffusion layer
C* - bulk concentration of the reactant
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The mass transfer coefficient
• Difficult to obtain precisely values of δ
• Therefore δ is grouped along with D to 

yield a new constant

km = D/ δ (37)

km is called the mass transfer coefficient 
(units: cm/s) 



89

• Now:
J = I /nFA (34)

• Combining eqns. 34, 36 and 37, we have:

I/nFA = km[C* -C(x=0)] (38)

Current dependence on reactant 
concentration
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The limiting current
As reaction proceeds faster- at some point all the 

reactant that reaches the electrode - consumed
immediately

At this point [C(x=0)] is zero, and the current levels 
off. Can be written as:

Il = nFAkmC* (39)

Il  is called the limiting current 
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• Relationship between surface and bulk 
concentrations – from equations 38 and 39:

C(x=0)/C* = [1 – (I/Il)]  (40)
• Substituting for C* (39),

C(x=0)= [(Il – I)/(nFAkm)] (41)

Both equations reiterate that surface 
concentration = 0 at the limiting current
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Significance of Il 
• Maximum current obtainable for given set 

of conditions
• Very important in fuel cell operation
• Generally, higher Il  implies lower mass 

transport losses – higher efficiency

Significant research efforts devoted to 
enhancing Il  in PEM systems
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Typical fuel cell polarization curve
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Common electrochemical 
experiments
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Potentiostat

Reference 
Electrode

E

POTENTIAL 
MONITOR

Feedback 
Control Signal I

Working 
Electrode

Counter 
Electrode
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Reference electrodes - SHE
An ideal reference electrode is one that 

maintains a constant potential irrespective 
of the amount of current (if any) that is 

passed through it

• Standard hydrogen electrode (NHE) –
simplest reference electrodes

• This electrodes potential (by definition) is 0 V
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• Electrode process in SHE:
H+ (aq, a=1)                 ½ H2 (g, 1atm)

• Consists of a platinum electrode immersed in a 
solution with a hydrogen ion concentration of 
1M. 

• The platinum electrode is made of a small 
square of platinum foil which is 

• Hydrogen gas, at a pressure of 1 atmosphere, is 
bubbled around the electrode

± e
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SHE

Very difficult to 
obtain unit 
activity  in 

practice
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Other reference electrodes
• The SHE – not widely used – difficult to 

obtain solution of 1M activity.
• Saturated Calomel Electrode  (SCE)– very 

popular:
- Electrode is mercury coated with 

calomel (Hg2Cl2)
- Electrolyte is a solution of potassium 

chloride and saturated calomel
Hg2Cl2(s) 2 Hg (l) +2 Cl- (aq)±2 e



http://everyscience.com/Chemistry 101

SCE

l
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Linear Sweep Voltammetry (LSV)
• Hydrogen gas passed through counter / 

reference electrode (anode) nitrogen passed 
through cathode

• Working electrode – fuel cell cathode 
subjected to a potential sweep from an 
initial to a final voltage (typically 1 –800 
mV)

• Sweep done using a potentiostat
• Fixed sweep rate – 4 mV/s
• Faradaic current monitored
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Input Function

E2 = 800 mV

4 mV/sV

E1 = 1 mV

t

Hydrogen – only species present – crosses over 
from anode to cathode through the membrane –
gets oxidized at the cathode at positive 
potentials (above 0 V)
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Output 
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Response
• When the potential is 0 V

- no net faradaic current

• When the potential exceeds 0V
- faradaic oxidation H2 = H+ + e

• As potential moves to more positive values
- “overpotential” / electrochemical driving 

force for oxidation increases
- reaction proceeds faster until it hits the mass          

transport limit – since hydrogen oxidation kinetics 
are fast, this limit is quickly attained
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Mass transport limit
• Above a certain E, reaction becomes mass transport 

limited – see output figure 

In the case of limiting current behaviour, the 
current can be converted into a reactant flux 

using Faraday’s law

J (H2) [mols/cm2-s] = * i /n F

Where i = 1 mA/cm2  (from voltammogram)
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Additional details
• The experiment is typically done at a low sweep 

rate ( 1- 4 mV/s or even lower)
• This is to ensure that the Nernst diffusion layer 

has the time required to grow out from the 
electrode 

• This results in “true” limiting current behaviour
• In practice, it is better to start the sweep at higher 

potentials to avoid effects of hydrogen evolution

The utility of LSV in fuel cell research will be 
further discussed in future lectures
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Internal short circuit
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Cyclic voltammetry
• Potential sweep experiment (similar to LSV)
• Additional reverse sweep incorporated
• Input function:

- start from E = E1
- sweep up to E = E2 
- sweep down, back to E = E1 

• Done using a potentiostat
• Fixed sweep rate
• Faradaic current monitored
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E1

E2 Typical voltammogram in 
electrochemical systems

Input

O + ne R

R             O + ne

ERedox Reaction :

O + ne R

Output
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Typical CV at a fuel cell cathode
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Response – Fuel cell cathode CV
• Resultant current behaviour on the forward 

sweep - same as discussed for LSV – H2
gets oxidized to give H+ and electrons

• Behaviour on the reverse sweep – the 
opposite redox phenomenon occurs – H+

gets reduced (gaining electrons in the 
process) to give H2

• Peak symmetry – indication of reaction 
reversibility
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Additional details
• Sweep rates (v) employed are typically 

higher than those in LSV (~ 20-30mV/s as 
opposed to 1-4 mV/s)

• peak height scales as v 0.5

• Thus larger v – better defined peaks

Need to ensure sweep rate is not too  high -
system tends to become quasi-reversible 

or irreversible
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Applications
• Studying the reversibility of reactions and 

redox behaviour of compounds
• Used to obtain quantitative information 

about the extent of reaction occurring on a 
surface

• In fuel cells – used to determine 
electrochemically active surface area of 
catalyst
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